#apery.py #probability that 3 integers have no factors in common (i.e. they are relatively prime) is 1/Apery # Apery's constant 1.2020569031... sum of i^-3 (1+1/2^3+1/3^3+1/4^3...) # sum of the inverses of the cubes of the positive integers is irrational. #reciprocal is .83190737... import random def apery(n): '''calculate Apery's constant, sum of 1/ i^3 with n terms''' apery_sum = 0 for i in range(1,n+1): apery_sum += 1 / i**3 return apery_sum places = int(input("Enter number of terms to calculate Apery's constant to: ")) print(apery(places)) def euclid(a, b): if b > a: a,b = b,a #swap so a>b while b > 0: r = a % b a = b b = r return a trials = int(input("Enter number of trials of random triples: ")) max_int = int(input("Enter max int: ")) triplesThatHaveCommonFactors = 0 for i in range(trials): a = random.randint(1,max_int) b = random.randint(1,max_int) c = random.randint(1,max_int) #print(a,b,c) if euclid(a,b)>1 and euclid(a,c)>1 and euclid(b,c)>1 : # not relatively prime triplesThatHaveCommonFactors += 1 print(1- triplesThatHaveCommonFactors/trials) sum_i_minus3 = 0 for i in range(1,100): sum_i_minus3 += 1/i**3 print("sum_i_minus3: ",sum_i_minus3) print("1/sum_i_minus3:",1/sum_i_minus3)