What is an Algorithm?
You probably have heard of terms like Algorithm and Program. Many people often confuse the two. The concept of an algorithm is much older than that of a program.
The term algorithm comes from a famous Mathematician, Abu Abdullah Muhammad ibn Musa Al-Khwarizmi, who lived in the 9th century in Persia (today Iran). He developed a series of steps to do arithmetic of large numbers. If you followed the steps, you would get the correct answer.
Later the term was used for developing the steps that a program needs to perform to produce the correct output. This happens when people started building machines (physical or electronic) that were customizable or programmable, meaning that the machines could do different things based upon how they were programmed.
The first computer programmer was Ada Lovelace. She wrote programs for the Babbage Machine and really was the first person to realize that creating a programmable machine and creating programs for it were fundamentally different tasks.
To create a computer program, you need to use and learn a programming language. You can use the programming language to write (or we sometimes call it "implement") an algorithm. Programming languages are a lot like human languages. There are many human languages like English, Vietnamese and French. There are also many programming languages likes Java, Python and C++. There are thousands of programming languages, but only about a handful are popular today.
	Human Languages
	Computer Languages

	English
	Java

	Vietnamese
	Python

	French
	C++

	Many more ...
	Many more ...

We normally write human languages in word processors. There are word processors that you install on your computer like Word and Open Office. There are also web-based word processors like Google Docs. We write programs in Integrated Development Environments. Just like word processors, some are designed to be installed on your computer and others are web-based.
In this course we are going to learn to develop algorithms and write them in a programming language. We are going to use the programming language Python. It is one of the easiest languages to learn and great for beginners. To write the programs we are going to install Python IDLE as our Integrated Development Environment.
What is a program?
A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, such as solving a system of equations or finding the roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or (strangely enough) compiling a program.
The details look different in different languages, but a few basic instructions appear in just about every language:
input: Get data from the keyboard, a file, or some other device.
output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication. conditional execution: Check for certain conditions and execute the appropriate code. repetition: Perform some action repeatedly, usually with some variation.
Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter how complicated, is made up of instructions that look pretty much like these. So you can think of programming as the process of breaking a large, complex task into smaller and smaller subtasks until the subtasks are simple enough to be performed with one of these basic instructions.
That may be a little vague, but we will come back to this topic when we talk about algorithms.
What is debugging?
Programming is error-prone. For whimsical reasons, programming errors are called bugs and the process of tracking them down is called debugging.
Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.
Syntax errors
Python can only execute a program if the syntax is correct; otherwise, the interpreter displays an error message. Syntax refers to the structure of a program and the rules about that structure. For example, parentheses have to come in matching pairs, so (1 + 2) is legal, but 8) is a syntax error.
In English, readers can tolerate most syntax errors, which is why we can read the poetry of e. e. cummings without spewing error messages. Python is not so forgiving. If there is a single syntax error anywhere in your program, Python will display an error message and quit, and you will not be able to run your program. During the first few weeks of your programming career, you will probably spend a lot of time tracking down syntax errors. As you gain experience, you will make fewer errors and find them faster.
Runtime errors
The second type of error is a runtime error, so called because the error does not appear until after the program has started running. These errors are also called exceptions because they usually indicate that something exceptional (and bad) has happened.
Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be a while before you encounter one.
Semantic errors
The third type of error is the semantic error. If there is a semantic error in your program, it will run successfully in the sense that the computer will not generate any error messages, but it will not do the right thing. It will do something else. Specifically, it will do what you told it to do.
The problem is that the program you wrote is not the program you wanted to write. The meaning of the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires you to work backward by looking at the output of the program and trying to figure out what it is doing.
Installing Python
Before you can begin writing Python programs you need to install an Python Integrated Development Environment (IDE). For this course we are going to use Python IDLE. It is easy to learn and comes with Python.
Installing Python IDLE
The installation for Python IDLE can be found at www.python.org. There are installations for Window, MAC and Linux computers.
Creating a Simple Program
Writing a simple program is a great way to be sure that your Python installation was successful.
Don't double click on .py file
One might think that double clicking on a PY file would open it in the Python editor for editing. They would be wrong. Double click on a PY file executes the program. It does not open it for editing. To edit a Python program open the Python IDLE and click File and Open.
Programming Process
Writing a program in some ways is like writing a research paper or article. Both use languages and tools for writing. However, there are some differences between writing programs and human languages.
Human languages are forgiving. If you make a mistake the reader normally knows what you mean and can still understand. So, if you forget a comma technically it is invalid English. But the reader can still understand what you wrote.
Computer programming languages are not very forgiving of mistakes. Let's say that you make a mistake and accidentally put two close parenthesis instead of one. This program will terminate; sometime we call this "crashing". And all that it might say is something like.
SyntaxError: invalid syntax
This makes writing computer programs challenging. They have to be almost perfect to work correctly.
Programmers go through a process when creating a program. It looks something like this:
1. They design the algorithm. They document the steps that the program needs to perform to work correctly. This is done in English can we normally call this pseudo-code.
2. They code the pseudo-code in a programming language. In our case that will be Python.
3. They execute, or run, the program looking for defects. This is called testing.
4. Each time that they discover a defect they analyze the issue and fix it. Then they go back to step 3 and continue testing it until they are confident that the defects have been fixed.
For large programs developers will something just code part of the program first. This makes it easier to test. After they resolve the defects they write more of the program, stopping periodically to test.
Top of FormVariables and Types
Bottom of Form
A value is one of the basic things a program works with, like a letter or a number.
Examples of values are 1, 2, and 'Hello, World!'. These values belong to different types: 2 is an integer, and 'Hello, World!' is a string, so called because it contains a “string” of letters. You (and the interpreter) can identify strings because they are enclosed in quotation marks. Python gives us the freedom to use either single or double quotes, so the string 'Hello, World' and "Hello, World!" are the same string. Note, however, that we must begin and end every string with the same type of quotation mark.
The print statement allows us to display both strings and integers as the following short program illustrates:
print(4)
print("Hello, World!")
print('Hello, World!')
If you are not sure what type a value has, the interpreter can tell you. Strings belong to the type str and integers belong to the type int. Less obviously, numbers with a decimal point belong to a type called float, because these numbers are represented in a format called floating point. What about values like '17' and '3.2'? They look like numbers, but they are in quotation marks like strings. Python has a predefined function called type that allows us to determine the type of any value.
The following program illustrates the use of the type function on strings, integers and floating point numbers:
print(type("Hello, World!"))
print(type('Hello, World!'))
print(type(17))
print(type(3.2))
print(type('17'))
print(type('3.2'))
 When you type a large integer, you might be tempted to use commas between groups of three digits, as in 1,000,000. Because commas act as separators in Python, Python will not flag this as an error but will instead misinterpret it. It will interpret 1,000,000 as a comma- separated sequence of integers, which it prints with spaces between. We should note, however, that Python does allow us to use underscores rather than commas in large number in much the same way as the following program demonstrates:
print(1,000,000)
print(1_000_000)
Variables
One of the most powerful features of a programming language is the ability to manipulate variables. A variable is a name that refers to a value.
An assignment statement creates new variables and gives them values. We write an assignment statement staring with a variable name followed by the = sign and then value that is being assigned to it. Let's consider some examples:
message = 'And now for something different'
n = 17
pi = 3.1415926535897931
In the above example, the first line assigns the string 'And now for something different' to a new variable named message. The second assigns the integer 17 to n and the third assigns the (approximate) value of π to pi. Assignments by themselves only store the values in a location in memory. To display the value of a variable, you must use a print statement as the following program illustrates:
message = 'And now for something different'
n = 17
pi = 3.1415926535897931
print(message)
print(n)
print(pi)
The type of a variable is the type of the value it refers to. So rather than printing the value of each variable, by first using the type function and the print function we can display the type of the variables rather than their values as illustrated in the program below:
message = 'Some string'
print(type(message))
n = 17
print(type(n))
n = 1.7
print(type(n))
Variable names and keywords
Programmers generally choose names for their variables that are meaningful and document what the variable is used for. Variable names can be arbitrarily long. They can contain both letters and numbers, but they cannot start with a number. Although it is legal to use uppercase letters, it is customary to use all lower-case letters in variables names.
The underscore character _ can appear in a name. It is often used in names with multiple words, such as my_name or airspeed_of_unladen_swallow. Variable names can start with an underscore character, but we generally avoid doing this unless we are writing library code for others to use.
If we violate the rule for naming variables by starting a name with a number or using a character that is neither alphanumeric nor an underscore, the Python interpreter will give us a syntax error. the program below illustrates some possible errors in naming variables:
76trombones = 'big parade'
more@ = 100000
class = 5.6
In addition to the keyword class, Python has a number of other keywords or reserved words. The interpreter uses keywords to recognize the structure of the program, and they cannot be used as variable names. Python reserves 31 keywords for its use:
and del from as elif global assert else if break except import class exec in continue finally is def for lambda not while or with pass yield print raise return try
You might want to keep this list handy. If the interpreter complains about one of your variable names and you don’t know why, see if it is on this list.
Top of Form
Statements
Bottom of Form
A statement is a unit of code that the Python interpreter can execute. We have seen two kinds of statements: print and assignment. A Python program contains a sequence of statements. If there is more than one statement, the results appear one at a time as the statements execute. If we fail to write statements in the proper order, programs will not produce the expected result as this program demonstrates:
print(1)
x = 2
print(x)
print(y)
y = 3
Operators and Operands
Operators are special symbols that represent computations like addition and multiplication. The values the operator is applied to are called operands.
The operators +, -, *, /, and ** perform addition, subtraction, multiplication, division, and exponentiation, as in the following examples:
20 + 32
year - 1
price * tax_rate
90 / 60
5 ** 2
To see the values generate by the mathematical formulas, we must be sure to first assign values to the variables and then use the print function to display them, which is what the following program does:
print(20 + 32)
year = 2020
print("last year was", year - 1)
price = 20.65
tax_rate = .06
print("tax is", price * tax_rate)
print(90 / 60)
print(5 ** 2)
Expressions
An expression is a combination of values, variables, and operators. A value all by itself is considered an expression, and so is a variable, so the following are all legal expressions (assuming that the variable x has been assigned a value):
17
x
x + 17
Operator precedence and associativity
When more than one operator appears in an expression, the order of evaluation depends on the rules of precedence. For mathematical operators, Python follows mathematical convention. The acronym PEMDAS is a useful way to remember the rules:
· Parentheses have the highest precedence and can be used to force an expression to evaluate in the order you want. Since expressions in parentheses are evaluated first, 2 * (3 - 1) is 4, and (1 + 1) ** (5 - 2) is 8. You can also use parentheses to make an expression easier to read, as in (minute * 100) / 60, even if it doesn’t change the result.
· Exponentiation has the next highest precedence, so 2 ** 1 + 1 is 3, not 4, and 3 * 1 ** 3 is 3, not 27.
· Multiplication and Division have the same precedence, which is higher than Addition and Subtraction, which also have the same precedence. So, 2 * 3 - 1 is 5, not 4, and 6 + 4 / 2 is 8, not 5.
· With the exception of exponentiation, operators with the same precedence are associated from left to right. So, the expression 5 - 3 - 1 is 1, not 3, because the 5 - 3 happens first and then 1 is subtracted from 2.
When in doubt, always put parentheses in your expressions to make sure the computations are performed in the order you intend. Let’s consider a few more examples that illustrate how formulas without parentheses are interpreted:
print(2 + 3 * 4, (2 + 3) * 4, 2 + (3 * 4))
print(2 ** 1 * 3, (2 ** 1) * 3, 2 ** (1 * 3))
print(6 - 4 - 2, (6 - 4) - 2, 6 - (4 - 2))
print(2 ** 3 ** 2, (2 ** 3) ** 2, 2 ** (3 ** 2))
Integer division and modulus operators
Python also has a second division operator that is used to perform integer division, which is division that truncates the result. The symbol for this operator is // rather than just /. The program below illustrates the difference between these two operators:
total_inches = 21
whole_feet = total_inches // 12
fractional_feet = total_inches / 12
print("whole feet = ",whole_feet)
print("fractional_feet = ",fractional_feet)
There is one additional operator that is often used in conjunction with the // operator, which is %. Although the symbol is the percent symbol, this operation does not involve taking a percentage, but instead gives the remainder after performing integer division. It is referred to as the modulus or remainder operator. These two operators are often used together as shown below:
total_inches = 21
whole_feet = total_inches // 12
remaining_inches = total_inches % 12
print("whole feet = ",whole_feet)
print("remaining inches = ",remaining_inches)
The modulus operator turns out to be surprisingly useful. For example, you can check whether one number is divisible by another—if x % y is zero, then x is divisible by y. You can also extract the right-most digit or digits from a number. For example, x % 10 yields the right-most digit of x (in base 10). Similarly, x % 100 yields the last two digits.
Strings
The + operator works with strings, but it is not addition in the mathematical sense. Instead it performs concatenation, which means joining the strings by linking them end to end. The type of the operands will determine whether that operator performs addition or concatenation. This program illustrates using the + operator in both ways:
first = 10
second = 15
print(first + second)
first = "10"
second = "15"
print(first + second)
Top of Form
User Input
Bottom of Form
 Sometimes we would like to take the value for a variable from the user via their keyboard. Python provides a built-in function called input that gets input from the keyboard.
When this function is called, the program stops and waits for the user to type something. When the user presses Return or Enter, the program resumes and input returns what the user typed as a string. let’s pair an input with a print to see how user input works:
user_typed = input()
print("user typed", user_typed)
Before getting input from the user, it is a good idea to print a prompt telling the user what to input. You can pass a string to input to be displayed to the user before pausing for input as follows:
day = input("What day is today? ")
print("Today is", day)
If we prefer to have the user's input to be entered on the next line, we can include a special character sequence at the end of our prompt. The character sequence \n represents a newline, which is a special character that causes a line break. Character sequences that begin with \ are often referred to as escape characters and are used to represent characters that do not have an associated glyph. Let’s modify our previous program to include \n at the end of the prompt:
day = input("What day is today?\n")
print("Today is", day)
If you expect the user to type an integer, you can try to convert the return value to int using the eval function.
prompt = "What is your favorite number? "
favorite = eval(input(prompt))
print("My favorite number is", favorite + 1, "one more.")
But let's see what happens if the user types something other than a string of digits.
We will see how to handle this kind of error later.
Comments
As programs get bigger and more complicated, they get more difficult to read. Formal languages are dense, and it is often difficult to look at a piece of code and figure out what it is doing, or why.
For this reason, it is a good idea to add notes to your programs to explain in natural language what the program is doing. These notes are called comments, and in Python they start with the # symbol. When the # symbol is the first symbol on the line, the whole line is a comment. You can also put comments at the end of the line after other Python code . Everything from the # to the end of the line is ignored—it has no effect on the program.
compute the percentage of the hour that has elapsed
minute = 30
percentage = (minute * 100) / 60 # percentage of an hour
print(percentage)
Comments are most useful when they document non-obvious features of the code. It is reasonable to assume that the reader can figure out what the code does; it is much more useful to explain why. Here is an example of a comment is that is redundant and should be avoided.
hour = 12 # set hour to 12
Good variable names can reduce the need for comments, but names that are too long can make complex expressions hard to read, so there is a trade-off.
Examples
To conclude our discussion in this chapter, we consider several simple examples. Before examining these examples, we introduce the concept of pseudocode, which is a technique for designing the control structure of programs. Pseudocode combines English with important keywords of Python. Once we have examined more Python statements, we will see the role these keywords play in pseudocode. Initially our pseudocode will consist primarily of a high level English description of the required actions. When we translate our pseudocode into Python, we will retain the pseudocode as comments.
Example 1
We begin with the requirements for our first example:
Write a program that uses input to prompt a user for their name and then welcomes them. For example:
Enter your name: Chuck
Hello Chuck
Next, we perform our design using the pseudocode just described:
Prompt the user for their name
Display a message welcoming the user
Example 2
First our requirements for the second example:
Write a program to prompt the user for hours and rate per hour to compute gross pay. For example:
Enter Hours: 35
Enter Rate: 2.75
Pay: 96.25
Next the pseudocode for our design:
Prompt the user for the hours worked and hourly rate
Compute and display the total pay
Example 3
Finally our requirements for the third example:
Write a program which prompts the user for a Celsius temperature, convert the temperature to Fahrenheit, and print out the converted temperature. For example:
Enter Temperature in Celsius: 0
Temperature in Fahrenheit: 32
Next the pseudocode for our design:
Prompt the user for the temperature in Celsius
Convert the temperature to Fahrenheit and display it

Bottom of Form
Boolean Expressions
A Boolean expression is an expression that is either true or false. The following examples use the operator ==, which compares two operands and produces True if they are equal and False otherwise. So 5 == 5 would evaluate to True, whereas 5 == 6 would evaluate to False.
Like arithmetic expressions, Boolean expressions can be assigned to variables:
different = 5 == 6
Notice that in the above we used both the = operator and the == operator. A common error is to use a single equal sign = instead of a double equal sign ==. Remember that = is an assignment operator and == is a comparison operator.
True and False are special values that belong to the type bool; they are not string. Let’s consider several possibilities: displaying a logical value, displaying the content of a variable that has been assigned a logical value and displaying the type of both.
print(5 == 5)
print(different)
print(type(5 == 5))
print(type(False))
The == operator is one of six comparison operators for comparing values; the others are:
x != y #x is not equal to y
x > y #x is greater than y
x < y #x is less than y
x >= y #x is greater than or equal to y
x <= y #x is less than or equal to y
Although these operations are probably familiar to you, the Python symbols are slightly different from the mathematical symbols for the same operations. There is no such thing as =< or =>.
Logical Operators
There are three logical operators: and, or, and not. The semantics (meaning) of these operators is similar to their meaning in English. For example,
x > 0 and x < 10
is true only if x is greater than 0 and less than 10.
n % 2 == 0 or n % 3 == 0 is true if either of the conditions is true, that is, if the number is divisible by 2 or 3.
Finally, the not operator negates a Boolean expression, so not (x > y) is true if x > y is false; that is, if x is less than or equal to y.
Suppose that we needed to determine whether a given year was a leap year. A logical expression would help us make that determination:
year % 4 == 0 and year % 100 != 0
That expression would consider years that are divisible by 4 to be leap years but exclude those that are divisible by 100.
When we mix more than one logical operator in a Boolean expression, it is a good idea to include parentheses, but if we don’t, we need to be sure that we understand how Python will interpret those expressions. Let’s consider an expression that contains both a not and an and:
not x > 10 and x < 20
We intend this expression to determine whether x is not in the range from 10 to 20 inclusive, but will it?
Let’s combine our previous expression written without the not and include another condition:
x <= 10 or x >= 20 and x % 2 == 0
Our intent is that this logical expression determine whether x is both outside the range from 10 to 20 and an even number. Recall that checking whether an integer is divisible by 2 is how we check whether an integer is even.
These examples have shown us that when we use more than one logical operator in an expression and we do not use parentheses, Python uses precedence rules to determine how to group the subexpressions in much the same way it does with the arithmetic operators. Among the logical operators, not has highest precedence and or has lowest.
We have seen two ways to express whether a number x is outside a range of values. We can use a similar approach to determine whether x is inside the range from 10 to 20 inclusive, which is 10 <= x and x <= 20. But Python provides us a simpler approach. In mathematics, it is customary to write x greater than or equal to 10 and less than or equal to 20 as 10 ≤ x ≤ 20. Python allows to do use a similar approach.
Strictly speaking, the operands of the logical operators should be Boolean expressions, but Python is not very strict. Any nonzero number is interpreted as True.
print(17 and True)
Python would treat 17 as true, so it would output True for the above print statement.
This flexibility can be useful, but there are some subtleties to it that might be confusing. You might want to avoid it until you are sure you know what you are doing because it can get you into trouble unless you fully understand it.
Although we have emphasized the importance of including parentheses in logical expressions that contain two logical operators, we should never use them in a expression with two comparison operators, like the following:
(10 <= x) <= 20
10 <= (x <= 20)
Conditional Execution
In order to write useful programs, we almost always need the ability to check conditions and change the behavior of the program accordingly. Conditional statements give us this ability. The simplest form is the if statement:
if x > 0:
 print("x is positive")
The Boolean expression after the if statement is called the condition. We end the if statement with a colon character : and the line(s) after the if statement are indented. The convention in Python is to intent four spaces and indentation must be consistent. Tabs should never be used. The flowchart shown below illustrates the flow of control in the above code.
[image:]
If the logical condition is true, then the indented statement gets executed. If the logical condition is false, the indented statement is skipped.
if statements have the same structure as function definitions or for loops, which are topics we will encounter later. The statement consists of a header line that ends with the colon character : followed by an indented block. Statements like this are called compound statements because they stretch across more than one line.
There is no limit on the number of statements that can appear in the body, but there must be at least one. Occasionally, it is useful to have a body with no statements (usually as a place keeper for code you haven’t written yet). In that case, you can use the pass statement, which does nothing.
if x < 0:
 pass # need to handle negative values!
Alternative execution
A second form of the if statement is alternative execution, in which there are two possibilities and the condition determines which one gets executed. The syntax looks like this:
if x % 2 == 0:
 print("x is even")
else:
 print("x is odd")
If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays a message to that effect. If the condition is false, the second set of statements is executed. The flowchart shown below illustrates the control flow when an else clause is included.
[image:]
Since the condition must either be true or false, exactly one of the alternatives will be executed. The alternatives are called branches, because they are branches in the flow of execution.
Chained conditionals
Sometimes there are more than two possibilities and we need more than two branches. One way to express a computation like that is a chained conditional:
if x < y:
 print("x is less than y")
elif x > y:
 print("x is greater than y ")
else:
 print("x and y are equal ")
elif is an abbreviation of “else if.” Again, exactly one branch will be executed. The flowchart below illustrates the flow of control in an if statement that includes an elif clause.
[image:]
There is no limit on the number of elif statements. If there is an else clause, it has to be at the end, but there doesn’t have to be one.
if choice == 'a':
 print("Bad guess")
elif choice == 'b':
 print ("Good guess")
elif choice == 'c':
 print ("Close, but not correct")
Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them is true, the corresponding branch executes, and the statement ends. Even if more than one condition is true, only the first true branch executes.
Top of Form
Nested Conditionals
Bottom of Form
One conditional can also be nested within another. We could have written the three-branch example like this:
if x == y:
 print("x and y are equal")
else:
 if x < y:
 print("x is less than y")
 else:
 print("x is greater than y")
The outer conditional contains two branches. The first branch contains a simple statement. The second branch contains another if statement, which has two branches of its own. Those two branches are both simple statements, although they could have been conditional statements as well.
[image:]
Although the indentation of the statements makes the structure apparent, nested conditionals become difficult to read very quickly when nested too deeply. In general, it is a good idea to avoid them when you can.
There are some cases, however, where using nested conditionals better reflects the underlying logic, which is when each level of indentation tests a different property. Consider a case where we wish to categorize an integer according to two characteristics, whether it is a single digit or a multiple digit number and whether it is odd or even.
if -10 < x < 10:
 if x % 2 == 0:
 print("Single digit even number")
 else:
 print("Single digit odd number")
else:
 if x % 2 == 0:
 print("Multiple digit even number")
 else:
 print("Multiple digit odd number")
Logical operators often provide a way to simplify nested conditional statements. For example, we can rewrite the following code using a single conditional:
if x > 0:
 if x % 2 == 1:
 print("x is a positive odd number")
The print statement is executed only if we make it past both conditionals, so we can get the same effect with the and operator:
if x > 0 and x % 2 == 1:
 print("x is a positive odd number")
Top of Form
Test Cases
By this point in learning how to program you might ask yourself, How do I know if my program is working correctly? That is not an easy question to answer. If you run your program and it terminates with a Syntax Error, you obviously have made a mistake somewhere. But what if it does not terminate? What happen if it executes and produces output? How do you know the output is correct?
One of the most common ways to gain confidence in your program is to write and execute Test Cases. A Test Case is a test that you will perform on your program and it will either Pass or Fail the test. There are many ways to write Test Cases. Some are more formal than others. We are going to use a very informal way to write Test Cases. A Test Case has only two parts: Input and Expected Output. The Input is a set of input values to the program and Expected Output is the correct output for that set. A set of Test Cases is called a Test Suite. When you execute a Test Suite you can generate a Test Report. A Test Report has the Test Cases along with Actual Output and Result. Actual Output is the output that the program gave for the input. Result is either Pass or Fail.
Let us look at an example. I would like to create a program to determine if three lengths can form a Triangle. So, the sum of any two sides cannot be shorter than the third side. Here is the program that was created. It seems to work.
print("The program will determine if 3 sides can form a triangle.")
print("Enter side 1")
side1 = eval(input())
print("Enter side 2")
side2 = eval(input())
print("Enter side 3")
side3 = eval(input())
if (side1 + side2 < side3):
 print("Not Triangle")
elif (side2 + side3 < side1):
 print("Not Triangle")
else:
 print("Triangle")
Here is a set of Test Cases, or Test Suite, that we can make for this program.
	Test Case
	Input
	Expected Output

	1
	Side 1 = 2
Side 2 = 2
Side 3 = 3
	Triangle

	2
	Side 1 = 2
Side 2 = 10
Side 3 = 4
	Not Triangle

	3
	Side 1 = 1
Side 2 = 1
Side 3 = 4
	Not Triangle

	4
	Side 1 = 10
Side 2 = 10
Side 3 = 10
	Triangle

	5
	Side 1 = 2
Side 2 = 10
Side 3 = 2
	Not Triangle

Now, I will execute all of the Test Cases and generate a Test Report.
	Test Case
	Input
	Expected Output
	Actual Output
	Result

	1
	Side 1 = 2
Side 2 = 2
Side 3 = 3
	Triangle
	Triangle
	Pass

	2
	Side 1 = 2
Side 2 = 10
Side 3 = 4
	Not Triangle
	Not Triangle
	Pass

	3
	Side 1 = 1
Side 2 = 1
Side 3 = 4
	Not Triangle
	Not Triangle
	Pass

	4
	Side 1 = 10
Side 2 = 10
Side 3 = 10
	Triangle
	Triangle
	Pass

	5
	Side 1 = 2
Side 2 = 10
Side 3 = 2
	Not Triangle
	Triangle
	Fail

After running the Test Suite I see that not all of my Test Cases have passed. That means that I have a mistake somewhere in my program. After examining the program I see that I never check for the situation when the sum of sides 1 and 2 are less than side 3.

Bottom of Form
Top of Form
Examples
Bottom of Form
Example 1
Write a program to prompt for a score between 0.0 and 1.0. If the score is out of range, print an error message. If the score is between 0.0 and 1.0, print a grade using the following table otherwise indicate that it is an invalid score:
Score Grade
>=0.9 A
>=0.8 B
>=0.7 C
>=0.6 D
<0.6 F
We begin with the pseudocode
read in a score
if the score outside the valid range
 display an error message
else
 based on our table determine the grade and display it
Then we translate the pseudocode into Python code:
read in a score
score = eval(input('Enter a score between 0.0 and 1.0 inclusive: '))
if the score outside the valid range display an error message

if score < 0.0 or score > 1.0:
 print('Bad score')
else based on our table determine the grade and display it
elif score >= 0.9:
 print('A')
elif score >= 0.8:
 print('B')
elif score >= 0.7:
 print('C')
elif score >= 0.6:
 print('D')
else:
 print('F')
Example 2
Next let's examine example that illustrates the process of starting from the requirements, then using pseudocode add stepwise refinement to develop a design and finally translating that design into Python code. we begin with the requirements:
Write a program that asks the user to enter three numbers and determines the largest value of the three and displays that largest value.
Here is the pseudocode:
read in three numbers
if the first is larger than other two, it is largest
else if the second it is larger than other two, it is largest
if neither of those were true, the third number must be largest

Top of Form
Function Calls
Bottom of Form
In the context of programming, a function is a named sequence of statements that performs a computation. When you define a function, you specify the name and the sequence of statements. Later, you can “call” the function by name. We have already seen one example of a function call:
print(type(32))
The name of the function is type. What is returned by that function is <class 'int'>.The expression in parentheses is called the argument of the function. The argument is a value or variable that we are passing into the function as input to the function. The result, for the type function, is the class that defines type of the argument.
It is common to say that a function “takes” an argument and “returns” a result. The result is called the return value.
Top of Form
Built-in Functions
Bottom of Form
Python provides a number of important built-in functions that we can use without needing to provide the function definition. The creators of Python wrote a set of functions to solve common problems and included them in Python for us to use.
We saw in our discussion last week that we could write a program to determine the largest value among three values. Python provides a simpler solution to that problem using the max function, which not only returns the largest of three values but any number of values. In addition, the min function returns the smallest value in a list. Let’s consider the problem of determining the smaller of two numbers supplied by the user and the largest of those two numbers and the number 10.
Read in two numbers

first = eval(input("Enter the first value: "))
second = eval(input("Enter the second value: "))

Call min to determine the smaller of the two and display it

smaller = min(first, second)
print("Smallest = ",smaller)

Call max to determine the largest of those two and 10)

largest = max(first, second, 10)
print("Largest = ",largest)
Another very common built-in function is the len function which tells us how many items are in its argument. If the argument to len is a string, it returns the number of characters in the string.
print(len('12345'))
print(len("abcde\n"))
You should treat the names of built-in functions as reserved words (i.e., avoid using max as a variable name).
Type Conversion Functions
Python also provides built-in functions that convert values from one type to another. The int function takes any value and converts it to an integer, if it can, or complains otherwise:
print(int('32'))
print(int('Hello'))
int can convert floating-point values to integers, but it doesn’t round off; it truncates the value, removing the fraction part:
print(int(3.99999))
print(int(-2.3))
float converts integers and strings to floating-point numbers:
print(float(32))
print(float('3.14159'))
Finally, str converts its argument to a string:
print(str(32))
print(str(3.14159))
Top of Form
Math Functions
Bottom of Form
Python has a math module that provides most of the familiar mathematical functions. Before we can use the module, we have to import it:
import math
This statement makes the functions contained in a module object named math accessible within the program.
The module object contains the functions and variables defined in the module. To access one of the functions, you have to specify the name of the module and the name of the function, separated by a dot (also known as a period). This format is called dot notation. One of the functions in the math module is the square root function, which is named sqrt. A famous theorem from geometry is the Pythagorean theorem, which states that the side of the hypotenuse of a right triangle is the square root of the sum of the squares of the two sides. It is written as:
c2 = a2+b2−−−−−−√
where a and b are the two sides and c is the hypotenuse. Let’s consider a short program that would compute the length of the hypotenuse given the length of the two sides:
import math
side1 = eval(input("Enter side 1 length: "))
side2 = eval(input("Enter side 2 length: "))
hypotenuse = math.sqrt(side1 ** 2 + side2 ** 2)
print("Hypotenuse =", hypotenuse)
The math module also contains a collection of trigonometric functions. The names of the of those functions are sin, cos, tan, etc. and correspond to sine, cosine and tangent, respectively. They take arguments in radians. To convert from degrees to radians, we divide by 360 and multiply by 2π. The expression math.pi provides the variable pi from the math module. The value of this variable is an approximation of π, accurate to about 15 digits. Let’s see how we would use the tan function and the constant pi to compute the length of the opposite side of a right triangle given the length of one side and its adjacent angle.
import math
side1 = eval(input("Enter side 1 length: "))
degrees = eval(input("Enter adjacent angle in degrees: "))
radians = degrees / 360 * 2 * math.pi
side2 = side1 * math.tan(radians)
print("side 2 length is", side2)
Although Python provides the ** operator for exponentiation, we must use a function from the math library to compute logarithms, which are the inverse. To demonstrate this inverse relationship, consider the following program:
import math
exponent = eval(input("Enter an exponent: "))
power_of_two = 2 ** exponent
log = math.log2(power_of_two)
print("2 **", exponent ,"is", power_of_two)
print("log 2 of", power_of_two, "is", log)
The previous example uses the function for logarithm base 2. The math module also provides a function called log that computes logarithms base e.
Top of Form
Adding New Functions
Bottom of Form
So far, we have only been using the functions that come with Python, but it is also possible to add new functions. A function definition specifies the name of a new function and the sequence of statements that execute when the function is called. Once we define a function, we can reuse the function over and over throughout our program.
Here is an example:
def print_lyrics():
 print("I'm a lumberjack, and I'm okay.")
 print("I sleep all night and I work all day.")
def is a keyword that indicates that this is a function definition. The name of the function is print_lyrics. The rules for function names are the same as for variable names: letters, numbers and some punctuation marks are legal, but the first character can’t be a number. You can’t use a keyword as the name of a function, and you should avoid having a variable and a function with the same name.
The empty parentheses after the name indicate that this function doesn’t take any arguments. Later we will build functions that take arguments as their inputs.
The first line of the function definition is called the header; the rest is called the body. The header has to end with a colon and the body has to be indented. By convention, the indentation is always four spaces. The body can contain any number of statements.
The strings in the print statements are enclosed in quotes. As previously noted, single quotes and double quotes do the same thing, but most people use single quotes except in cases like this where a single quote (which is also an apostrophe) appears in the string.
Defining a function creates a variable with the same name. The value of print_lyrics is a function object, which has type function.
print(print_lyrics)
print(type(print_lyrics))
The syntax for calling the new function is the same as for built-in functions:
print_lyrics()
Once you have defined a function, you can use it inside another function. For example, to repeat the previous refrain, we could write a function called repeat_lyrics:
def repeat_lyrics():
 print_lyrics()
 print_lyrics()
Pulling together the code fragments from the previous section, the whole program looks like this:
def print_lyrics():
 print("I'm a lumberjack, and I'm okay.")
 print("I sleep all night and I work all day.")

def repeat_lyrics():
 print_lyrics()
 print_lyrics()

repeat_lyrics()
This program contains two function definitions: print_lyrics and repeat_lyrics. Function definitions get executed just like other statements, but the effect is to create function objects. The statements inside the function do not get executed until the function is called, and the function definition generates no output.
As you might expect, you have to create a function before you can execute it. In other words, the function definition has to be executed before the first time it is called.
Flow of Execution
In order to ensure that a function is defined before its first use, you have to know the order in which statements are executed, which is called the flow of execution.
Execution always begins at the first statement of the program. Statements are executed one at a time, in order from top to bottom.
Function definitions do not alter the flow of execution of the program, but remember that statements inside the function are not executed until the function is called.
A function call is like a detour in the flow of execution. Instead of going to the next statement, the flow jumps to the body of the function, executes all the statements there, and then comes back to pick up where it left off.
That sounds simple enough, until you remember that one function can call another. While in the middle of one function, the program might have to execute the statements in another function. But while executing that new function, the program might have to execute yet another function!
Fortunately, Python is good at keeping track of where it is, so each time a function completes, the program picks up where it left off in the function that called it. When it gets to the end of the program, it terminates.
What’s the moral of this sordid tale? When you read a program, you don’t always want to read from top to bottom. Sometimes it makes more sense if you follow the flow of execution.
Parameters and Arguments
Some of the built-in functions we have seen require arguments. For example, when you call math.sin you pass a number as an argument. Some functions take more than one argument: math.pow takes two, the base and the exponent.
Inside the function, the arguments are assigned to variables called parameters. Here is an example of a user-defined function that takes an argument:
def print_twice(bruce):
 print(bruce)
 print(bruce)
This function assigns the argument to a parameter named bruce. When the function is called, it prints the value of the parameter (whatever it is) twice. This function works with any value that can be printed.
print_twice('Spam')
print_twice(17)
print_twice(math.pi)
The same rules of composition that apply to built-in functions also apply to user- defined functions, so we can use any kind of expression as an argument for print_twice:
print_twice("Spam "*4)
print_twice(math.cos(math.pi))
The argument is evaluated before the function is called, so in the examples the expressions 'Spam ' * 4 and math.cos(math.pi) are only evaluated once.
You can also use a variable as an argument:
michael = "Eric, the half a bee."
print_twice(michael)
The name of the variable we pass as an argument (michael) has nothing to do with the name of the parameter (bruce). It doesn’t matter what the value was called back home (in the caller); here in print_twice, we call everybody bruce.
Function Return Values
Some of the functions we are using, such as the math functions, yield results; such functions are often referred to as value-returning functions. Other functions, like print_twice, perform an action but don’t return a value. They are called void functions.
When you call a value-returning function, you almost always want to do something with the result; for example, you might assign it to a variable or use it as part of an expression:
x = math.cos(radians)
golden = (math.sqrt(5) + 1) / 2
If you call a value-returning function and do not store the result of the function in a variable, the return value vanishes into the mist!
math.sqrt(5)
This line computes the square root of 5, but since it doesn’t store the result in a variable or display the result, it is not very useful.
Void functions might display something on the screen or have some other effect, but they don’t have a return value. If you try to assign the result to a variable, you get a special value called None. The value None is not the same as the string 'None'. It is a special value that has its own type:
result = print_twice('Bing')
print(result)
print(type(result))
To return a result from a function, we use the return statement in our function. For example, we could make a very simple function called addtwo that adds two numbers together and returns a result.
def addtwo(a, b):
 added = a + b
 return added
x = addtwo(3, 5)
print(x)
When this program executed, the print statement printed out 8 because the addtwo function was called with 3 and 5 as arguments. Within the function, the parameters a and b were 3 and 5 respectively. The function computed the sum of the two numbers and placed it in the local function variable named added. Then it used the return statement to send the computed value back to the calling code as the function result, which was assigned to the variable x and printed out.
Why Use Functions
It may not be clear why it is worth the trouble to divide a program into functions. There are several reasons:
· Creating a new function gives you an opportunity to name a group of statements, which makes your program easier to read, understand, and debug.
· Functions can make a program smaller by eliminating repetitive code. Later, if you make a change, you only have to make it in one place.
· Dividing a long program into functions allows you to debug the parts one at a time and then assemble them into a working whole.
· Well-designed functions are often useful for many programs. Once you write and debug one, you can reuse it.
Throughout the rest of this course, often we will use a function definition to explain a concept. Part of the skill of creating and using functions is to have a function properly capture an idea such as “find the smallest value in a list of values”. Later we will show you code that finds the smallest in a list of values and we will present it to you as a function named min which takes a list of values as its argument and returns the smallest value in the list.
Top of Form
Test Case Best Practices
Bottom of Form
Last week we learned about making Test Cases to test our program. Here are some best practices for good Test Case generation.
1. Try to make different types of tests.
2. Try to have every line of code be executed by at least one Test Case.
3. When executing Test Cases execute all of them. Sometimes people stop testing for the first Test Case that fails. Execute all of the Test Cases even if multiple ones fail. Then look at the ones that have failed and look for patterns.
4. Every time that you change your program, re-execute all of your Test Cases. Often programmers will get a program working and then make one, small, minor change and then it no longer works correctly.
5. The Actual Output is a clue to what the problem. Many times developers overlook the Actual Output for Failed test cases. Look at the Actual Output and think about what mistake could explain this output.
6. One mistake could produce multiple tests to fail. So, if you see 3 test cases that failed that does not mean that you have 3 defects. Likewise, it is possible two defects could only produce one test case to fail.
Updating Variables
A common pattern in assignment statements is an assignment statement that updates a variable--where the new value of the variable depends on the old.
x = x + 1
This means “get the current value of x, add 1, and then update x with the new value.”
If you try to update a variable that doesn’t exist, you get an error, because Python evaluates the right side before it assigns a value to x:
Before you can update a variable, you must initialize it, usually with a simple assignment:
x = 0
x = x + 1
Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.
The while Statement
Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without making errors is something that computers do well, and people do poorly. Because iteration is so common, Python provides several language features to make it easier.
One form of iteration in Python is the while statement. Here is a simple program that counts down from five and then says “Blastoff!”.
n = 5
while n > 0:
 print(n)
 n = n - 1
print("Blastoff!")
You can almost read the while statement as though it were English. It means, “While n is greater than 0, display the value of n and then reduce the value of n by 1. When you get to 0, exit the while statement and display the word Blastoff!”.
More formally, here is the flow of execution for a while statement:
· Evaluate the condition, yielding True or False.
· If the condition is false, exit the while statement and continue execution at the next statement.
· If the condition is true, execute the body and then go back to step 1.
This type of flow is called a loop because the third step loops back around to the top. Each execution of the body of the loop is called an iteration. For the above loop, we would say, “It had five iterations”, which means that the body of the loop was executed five times.
The body of the loop should change the value of one or more variables so that eventually the condition becomes false and the loop terminates. We call the variable that changes each time the loop executes and controls when the loop finishes the iteration variable or loop control variable. If there is no iteration variable, the loop will repeat forever, resulting in an infinite loop.
Infinite Loops
An endless source of amusement for programmers is the observation that the directions on shampoo, “Lather, rinse, repeat,” are an infinite loop because there is no iteration variable telling you how many times to execute the loop.
In the case of countdown, we can prove that the loop terminates because we know that the value of n is finite, and we can see that the value of n gets smaller each time through the loop, so eventually we have to get to 0. Other times a loop is obviously infinite because it has no iteration variable at all.
Top of Form
for Loops
Bottom of Form
Sometimes we want to loop through a set of things such as a list of words, the lines in a file, or a list of numbers. When we have a list of things to loop through, we can construct a definite loop using a for statement. We call the while statement an indefinite loop because it simply loops until some condition becomes False, whereas the for loop is looping through a known set of items so it runs through as many iterations as there are items in the set.
The syntax of a for loop is similar to the while loop in that there is a for statement and a loop body:
friends = ["Joseph", "Glenn", "Sally"]
for friend in friends:
 print("Happy New Year:", friend)
print("Done!")
In Python terms, the variable friends is a list of three strings and the for loop goes through the list and executes the body once for each of the three strings.
Translating this for loop to English is not as direct as the while, but if you think of friends as a set, it goes like this: “Run the statements in the body of the for loop once for each friend in the set named friends.”
Looking at the for loop, for and in are reserved Python keywords, and friend and friends are variables.
for friend in friends:
 print("Happy New Year", friend)
In particular, friend is the iteration variable for the for loop. The variable friend changes for each iteration of the loop and controls when the for loop completes. The iteration variable steps successively through the three strings stored in the friends variable.
Top of Form
Counting Loop
Bottom of Form
Often, we use a for or while loop to go through a list of items or the contents of a file and we are looking for something such as the largest or smallest value of the data we scan through.
These loops are generally constructed by:
· Initializing one or more variables before the loop starts
· Performing some computation on each item in the loop body, possibly changing the variables in the body of the loop
· Looking at the resulting variables when the loop completes
We will use a list of numbers to demonstrate the concepts and construction of these loop patterns.
For example, to count the number of items in a list, we would write the following for loop:
count = 0
for itervar in [3, 41, 12, 9, 74, 15]:
 count = count + 1
print("Count:", count)
We set the variable count to zero before the loop starts, then we write a for loop to run through the list of numbers. Our iteration variable is named itervar and while we do not use itervar in the loop, it does control the loop and cause the loop body to be executed once for each of the values in the list.
In the body of the loop, we add 1 to the current value of count for each of the values in the list. While the loop is executing, the value of count is the number of values we have seen “so far”.
Once the loop completes, the value of count is the total number of items. The total number “falls in our lap” at the end of the loop. We construct the loop so that we have what we want when the loop finishes.
Summing Loop
Another similar loop that computes the total of a set of numbers is as follows:
total = 0
for itervar in [3, 41, 12, 9, 74, 15]:
 total = total + itervar
print("Total: ", total)
In this loop we do use the iteration variable. Instead of simply adding one to the count as in the previous loop, we add the actual number (3, 41, 12, etc.) to the running total during each loop iteration. If you think about the variable total, it contains the “running total of the values so far”. So before the loop starts total is zero because we have not yet seen any values, during the loop total is the running total, and at the end of the loop total is the overall total of all the values in the list.
As the loop executes, total accumulates the sum of the elements; a variable used this way is sometimes called an accumulator.
Neither the counting loop nor the summing loop are particularly useful in practice because there are built-in functions len and sum that compute the number of items in a list and the total of the items in the list respectively.
Top of Form
Loop Finding Largest
Bottom of Form
To find the largest value in a list or sequence, we construct the following loop:
largest = None
print("Before:", largest)
for itervar in [3, 41, 12, 9, 74, 15]:
 if largest is None or itervar > largest:
 largest = itervar
 print("Current value:", itervar, " Largest so far", largest)
print("Largest:", largest)
The variable largest is best thought of as the “largest value we have seen so far”. Before the loop, we set largest to the constant None. None is a special constant value which we can store in a variable to mark the variable as “empty”.
Before the loop starts, the largest value we have seen so far is None since we have not yet seen any values. While the loop is executing, if largest is None then we take the first value we see as the largest so far. You can see in the first iteration when the value of itervar is 3, since largest is None, we immediately set largest to be 3.
After the first iteration, largest is no longer None, so the second part of the compound logical expression that checks itervar > largest triggers only when we see a value that is larger than the “largest so far”. When we see a new “even larger” value we take that new value for largest. You can see in the program output that largest progresses from 3 to 41 to 74.
At the end of the loop, we have scanned all the values and the variable largest now does contain the largest value in the list.
Loop Finding Smallest
To compute the smallest number, the code is very similar with one small change:
smallest = None
print("Before:", smallest)
for itervar in [3, 41, 12, 9, 74, 15]:
 if smallest is None or itervar < smallest:
 smallest = itervar
 print("Current value:", itervar, " Smallest so far", smallest)
print("Smallest:", smallest)
Again, smallest is the “smallest so far” before, during, and after the loop executes. When the loop has completed, smallest contains the minimum value in the list.
Again, as in counting and summing, the built-in functions max and min make writing these exact loops unnecessary.
The following is a simple version of the Python built-in min function:
def min(values):
 smallest = None
 for value in values:
 if smallest is None or value < smallest:
 smallest = value
 return smallest
In the function version of the smallest code, we removed all the print statements so as to be equivalent to the min function which is already built in to Python.
Testing using a Debugger
Would not it be great to see what is going on inside of a program while it is running? Well you can. Most programming environments have a Debugger. Debuggers allow you to:
· Pause a program in the middle.
· Step through it one line at a time.
· See the values of variables and watch them change.
Before we show you how to use the Python Debugger, you need to know what a Breakpoint is. A breakpoint is indication on a line of code that you want the Debugger to pause the program on that line. You can then see what is happening in that area of the program.
To set a breakpoint in Python, put the cursor on the line in the editor window, right click and select Set breakpoint. The line will become yellow. To remove a breakpoint, set the cursor to the line with the breakpoint, right click and select Clear breakpoint.
Besides the breakpoint most Debuggers have the same functions.
1. Step. Execute the current line of code and then move to the next line, but don't execute the next line until indicated.
2. Go or Run. Execute the program from the current line and continue executing lines until you hit a breakpoint or the end of the program.
3. Step Over. Execute the current line of code, just like Step does. Except if the current line of code calls a function, execute all of the lines of the function.
Debuggers are great tools to use to learn about programming and to find defects in programs.
Top of Form
String is a Sequence
Bottom of Form
A string is a sequence of characters. You can access the characters one at a time with the bracket operator:
fruit = 'banana'
letter = fruit[1]
The second statement extracts the character at index position 1 from the fruit variable and assigns it to the letter variable.
The expression in brackets is called an index. The index indicates which character in the sequence you want (hence the name).
But you might not get what you expect:
print(letter)
For most people, the first letter of 'banana' is b, not a. But in Python, the index is an offset from the beginning of the string, and the offset of the first letter is zero.
So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th letter (“one-eth”), and n is the 2th (“two-eth”) letter.
	b
	a
	n
	a
	n
	a

	[0]
	[1]
	[2]
	[3]
	[4]
	[5]

You can use any expression, including variables and operators, as an index, but the value of the index has to be an integer.
Length of a String
 	len is a built-in function that returns the number of characters in a string:
fruit = 'banana'
print(len(fruit))
To get the last letter of a string, you might be tempted to try something like this:
length = len(fruit)
last = fruit[length]
The reason for the IndexError is that there is no letter in ’banana’ with the index 6. Since we started counting at zero, the six letters are numbered 0 to 5. To get the last character, you have to subtract 1 from length:
last = fruit[length-1]
print(last)
Alternatively, you can use negative indices, which count backward from the end of the string. The expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.
last_also = fruit[-1]
print(last_also)
second_last = fruit[-2]
print(second_last)
Traversal through a String with a Loop 	A lot of computations involve processing a string one character at a time. Often they start at the beginning, select each character in turn, do something to it, and continue until the end. This pattern of processing is called a traversal. One way to write a traversal is with a while loop:
index = 0
while index < len(fruit):
 letter = fruit[index]
 print(letter)
 index = index + 1
This loop traverses the string and displays each letter on a line by itself. The loop condition is index < len(fruit), so when index is equal to the length of the string, the condition is false, and the body of the loop is not executed. The last character accessed is the one with the index len(fruit)-1, which is the last character in the string.
Another way to write a traversal is with a for loop:
for char in fruit:
 print(char)
Each time through the loop, the next character in the string is assigned to the variable char. The loop continues until no characters are left.
String Slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a character:
s = 'Monty Python'
print(s[0:5])
print(s[6:12])
The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth” character, including the first but excluding the last. If you omit the first index (before the colon), the slice starts at the beginning of the string. If you omit the second index, the slice goes to the end of the string:
fruit = 'banana'
print(fruit[:3])
print(fruit[3:])
If the first index is greater than or equal to the second the result is an empty string, represented by two quotation marks:
fruit = 'banana'
print(fruit[3:3]
An empty string contains no characters and has length 0, but other than that, it is the same as any other string.
Strings are Immutable
It is tempting to use the [] operator on the left side of an assignment, with the intention of changing a character in a string. For example:
greeting = 'Hello, world!'
greeting[0] = 'J'
The “object” in this case is the string and the “item” is the character you tried to assign. For now, an object is the same thing as a value, but we will refine that definition later. An item is one of the values in a sequence.
The reason for the error is that strings are immutable, which means you can’t change an existing string. The best you can do is create a new string that is a variation on the original:
greeting = 'Hello, world!'
new_greeting = 'J' + greeting[1:]
print(new_greeting)
This example concatenates a new first letter onto a slice of greeting. It has no effect on the original string.
Top of Form
Loops and Counting
Bottom of Form
The following program counts the number of times the letter a appears in a string:
word = 'banana'
count = 0
for letter in word:
 if letter == 'a':
 count = count + 1
print(count)
This program demonstrates another pattern of computation called a counter. The variable count is initialized to 0 and then incremented each time an a is found. When the loop exits, count contains the result—the total number of a’s.
Top of Form
String Conditions
Bottom of Form
The word in is a Boolean operator that takes two strings and returns True if the first appears as a substring in the second:
print('a' in 'banana')
print('seed' in 'banana')
The comparison operators, also referred to as relational operators, work on strings also. To see if two strings are equal:
word = input("Enter a word: ")
if word == 'banana':
 print("All right, bananas.")
Other comparison operations are useful for putting words in alphabetical order:
word = input("Enter a word: ")
if word < "banana":
 print("Your word, " + word + ", comes before banana.")
elif word > "banana":
 print("Your word, " + word + ", comes after banana.")
else:
 print("All right, bananas.")
Python does not handle uppercase and lowercase letters the same way that people do. All the uppercase letters come before all the lowercase letters, so:
Your word, Pineapple, comes before banana.
A common way to address this problem is to convert strings to a standard format, such as all lowercase, before performing the comparison. Keep that in mind in case you have to defend yourself against a man armed with a Pineapple.
Reversing Strings
Let’s consider how to write a while loop that starts at the last character in the string and works its way backwards to the first character in the string, printing each letter on a separate line, except backwards.
word = input("Enter a word: ")
index = len(word) - 1
while index >= 0:
 print(word[index])
 index = index - 1
String Methods
Strings are an example of Python objects. An object contains both data (the actual string itself) and methods, which are effectively functions that are built into the object and are available to any instance of the object.
Python has a function called dir which lists the methods available for an object.
The type function shows the type of an object and the dir function shows the available methods.
stuff = 'Hello world'
print(type(stuff))
print(dir(stuff))
We can obtain information about what a method does, what parameters it accepts and what value it returns by making use of the help function.
help(str.capitalize)
Calling a method is similar to calling a function—it takes arguments and returns a value—but the syntax is different. We call a method by appending the method name to the variable name using the period as a delimiter.
For example, the method upper takes a string and returns a new string with all uppercase letters:
Instead of the function syntax upper(word), it uses the method syntax word.upper().
word = 'banana'
new_word = word.upper()
print(new_word)
This form of dot notation specifies the name of the method, upper, and the name of the string to apply the method to, word. The empty parentheses indicate that this method takes no argument.
A method call is called an invocation; in this case, we would say that we are invoking upper on the word.
For example, there is a string method named find that searches for the position of one string within another. In this example, we invoke find on word and pass the letter we are looking for as a parameter.
word = 'banana'
index = word.find('a')
print(index)
The find method can find substrings as well as characters. It can optionally take as a second argument, which is the index where it should start.
word = 'banana'
print(word.find('na'))
print(word.find('na', 3))
One common task is to remove white space (spaces, tabs, or newlines) from the beginning and end of a string using the strip method:
old_line = ' Here we go '
print('Old line length:', len(old_line))
new_line = old_line.strip()
print('New line length:', len(new_line))
print('New line:', new_line)
Some methods such as startswith return Boolean values.
line = 'Please have a nice day'
print(line.startswith('Please'))
print(line.startswith('p'))
Note that startswith requires case to match, so sometimes we take a string and map it all to lowercase before we do any checking using the lower method.
line = 'Please have a nice day'
print(line.startswith('p'))
print(line.lower())
print(line.lower().startswith('p'))
In the last example, the method lower is called and then we use startswith to see if the resulting lowercase string starts with the letter p. If we are careful with the order, we can make multiple method calls in a single expression.
Top of Form
An Array is a Sequence
Bottom of Form
Like a string, an array (sometimes called a list) is a sequence of values. In a string, the values are characters; in a list, they can be any type. The values in a list are called elements or sometimes items.
There are several ways to create a new array; the simplest is to enclose the elements in square brackets ([and]):
[10, 20, 30, 40]
['crunchy frog', 'ram bladder', 'lark vomit']
The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to be the same type. The following list contains a string, a float, an integer, and (lo!) another list:
['spam', 2.0, 5, [10, 20]]
A list within another list is nested.
A list that contains no elements is called an empty list; you can create one with empty brackets, [].
As you might expect, you can assign list values to variables:
cheeses = ['Cheddar', 'Edam', 'Gouda']
numbers = [17, 123]
empty = []
print(cheeses, numbers, empty)
Top of Form
Modifying Array Elements
Bottom of Form
The syntax for accessing the elements of a list is the same as for accessing the characters of a string—the bracket operator. The expression inside the brackets specifies the index. Remember that the indices start at 0:
cheeses = ['Cheddar', 'Edam', 'Gouda']
numbers = [17, 123]
empty = []
print(cheeses[0])
print(numbers[-1])
print(empty[0])
Unlike strings, lists are mutable because you can change the order of items in a list or reassign an item in a list. When the bracket operator appears on the left side of an assignment, it identifies the element of the list that will be assigned.
numbers = [17, 123]
numbers[1] = 5
print(numbers)
You can think of a list as a relationship between indices and elements. This relationship is called a mapping; each index “maps to” one of the elements.
· List indices work the same way as string indices:
· Any integer expression can be used as an index.
· If you try to read or write an element that does not exist, you get an IndexError.
· If an index has a negative value, it counts backward from the end of the list.
The in operator also works on lists.
cheeses = ['Cheddar', 'Edam', 'Gouda']
print('Edam' in cheeses)
print('Brie' in cheeses)
Traversing an Array
The most common way to traverse the elements of a list is with a for loop. The syntax is the same as for strings:
cheeses = ['Cheddar', 'Edam', 'Gouda']
for cheese in cheeses:
 print(cheese)
This works well if you only need to read the elements of the list. But if you want to write or update the elements, you need the indices. A common way to do that is to combine the functions range and len:
numbers = [17, 123]
for i in range(len(numbers)):
 numbers[i] = numbers[i] * 2
print(numbers)
This loop traverses the list and updates each element. len returns the number of elements in the list. range returns a list of indices from 0 to n−1, where n is the length of the list. Each time through the loop, i gets the index of the next element.
The assignment statement in the body uses i to read the old value of the element and to assign the new value.
A for loop over an empty list never executes the body:
empty = []
for x in empty:
 print("This never happens.")
print("The loop has completed.")
Although a list can contain another list, the nested list still counts as a single element.
list_of_lists = ['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2]]
print("Length of outer list", len(list_of_lists))
print("Length of first inner list", len(list_of_lists[2]))
print("Length of second inner list", len(list_of_lists[3]))
Array Operators
The + operator concatenates lists:
a = [1, 2, 3]
b = [4, 5, 6]
c = a + b
print(c)
Similarly, the * operator repeats a list a given number of times:
print([0] * 4)
print([1, 2, 3] * 3)
Notice that the first example repeats [0] four times. The second example repeats the list [1, 2, 3] three times.
Array Slices
The slice operator also works on lists. If you omit the first index, the slice starts at the beginning. If you omit the second, the slice goes to the end. So if you omit both, the slice is a copy of the whole list.
t = ['a', 'b', 'c', 'd', 'e', 'f']
print(t[1:3])
print(t[:4])
print(t[3:])
print(t[:])
Since lists are mutable, it is often useful to make a copy before performing operations that fold, spindle, or mutilate lists.
A slice operator on the left side of an assignment can update multiple elements:
t = ['a', 'b', 'c', 'd', 'e', 'f']
t[1:3] = ['x', 'y']
print(t)
Array Methods
Python provides methods that operate on lists. For example, append adds a new element to the end of a list:
t = ['a', 'b', 'c']
t.append('d')
print(t)
extend takes a list as an argument and appends all of the elements:
t1 = ['a', 'b', 'c']
t2 = ['d', 'e']
t1.extend(t2)
print(t1)
This example leaves t2 unmodified.
sort arranges the elements of the list from low to high:
t = ['d', 'c', 'e', 'b', 'a']
t.sort()
print(t)
Deleting Array Elements
Most list methods are void; they modify the list and return None. If you accidentally write t = t.sort(), you will be disappointed with the result.
There are several ways to delete elements from an array. If you know the index of the element you want, you can use pop. It modifies the list and returns the element that was removed. If you don’t provide an index, it deletes and returns the last element. If you don’t need the removed value, you can use the del operator:
s = ['a', 'b', 'c']
x = s.pop(1)
print(s)
print(x)
t = ['d', 'e', 'f']
x = t.pop()
print(t)
print(x)
u = ['g', 'h', 'i']
del u[1]
print(u)
If you know the element you want to remove (but not the index), you can use remove:
t = ['a', 'b', 'c']
x = t.remove('b')
print(t)
print(x)
Notice that the return value from remove is None.
To remove more than one element, you can use del with a slice index:
t = ['a', 'b', 'c', 'd', 'e', 'f']
del t[1:5]
print(t)
As usual, the slice selects all the elements up to, but not including, the second index.
Arrays and Functions
There are a number of built-in functions that can be used on lists that allow you to quickly look through a list without writing your own loops:
nums = [3, 41, 12, 9, 74, 15]
print("Length", len(nums))
print("Maximum", max(nums))
print("Minimum", min(nums))
print("Sum", sum(nums))
print("Average", sum(nums)/len(nums))
The sum function only works when the list elements are numbers. The other functions (max, len, etc.) work with lists of strings and other types that can be compared.
We could rewrite an earlier program that computed the average of a list of numbers entered by the user using a list.
First, the program to compute an average without a list:
total = 0
count = 0
value = eval(input("Enter a number (Enter –1 to exit): "))
while value != -1:
 total = total + value
 count = count + 1
 value = eval(input("Enter a number (Enter –1 to exit): "))
average = total / count
print("Average:", average)
In this program, we have count and total variables to keep the number and running total of the user’s numbers as we repeatedly prompt the user for a number.
We could simply remember each number as the user entered it and use built-in functions to compute the sum and count at the end.
numlist = list()
value = eval(input("Enter a number (Enter –1 to exit): "))
while (value != -1):
 numlist.append(value)
 value = eval(input("Enter a number (Enter –1 to exit): "))
average = sum(numlist) / len(numlist)
print("Average:", average)
We make an empty list before the loop starts, and then each time we have a number, we append it to the list. At the end of the program, we simply compute the sum of the numbers in the list and divide it by the count of the numbers in the list to come up with the average.

image1.png
print 'x is positive'

image2.png

image3.png
print 'greater'

print 'equal’

image4.png
yes /K no
X==y

yes no

‘print ‘equal’| [print 'less'|] print 'greater' |

